Robust Optimization using Machine Learning for Uncertainty Sets

نویسندگان

  • Theja Tulabandhula
  • Cynthia Rudin
چکیده

Our goal is to build robust optimization problems for making decisions based on complex data from the past. In robust optimization (RO) generally, the goal is to create a policy for decision-making that is robust to our uncertainty about the future. In particular, we want our policy to best handle the the worst possible situation that could arise, out of an uncertainty set of possible situations. Classically, the uncertainty set is simply chosen by the user, or it might be estimated in overly simplistic ways with strong assumptions; whereas in this work, we learn the uncertainty set from data collected in the past. The past data are drawn randomly from an (unknown) possibly complicated high-dimensional distribution. We propose a new uncertainty set design and show how tools from statistical learning theory can be employed to provide probabilistic guarantees on the robustness of the policy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conjugate Property between Loss Functions and Uncertainty Sets in Classification Problems

In binary classification problems, mainly two approaches have been proposed; one is loss function approach and the other is uncertainty set approach. The loss function approach is applied to major learning algorithms such as support vector machine (SVM) and boosting methods. The loss function represents the penalty of the decision function on the training samples. In the learning algorithm, the...

متن کامل

Simulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine

In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...

متن کامل

Primal and dual robust counterparts of uncertain linear programs: an application to portfolio selection

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...

متن کامل

Modeling of Epistemic Uncertainty in Reliability Analysis of Structures Using a Robust Genetic Algorithm

In this paper the fuzzy structural reliability index was determined through modeling epistemic uncertainty arising from ambiguity in statistical parameters of random variables. The First Order Reliability Method (FORM) has been used and a robust genetic algorithm in the alpha level optimization method has been proposed for the determination of the fuzzy reliability index. The sensitivity level ...

متن کامل

Event-driven and Attribute-driven Robustness

Over five decades have passed since the first wave of robust optimization studies conducted by Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept aside; there is much more potential for investigating the exact nature of uncertainties to obtain intelligent robust models. For this purpose, in this study, we investigate a more refined description...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1407.1097  شماره 

صفحات  -

تاریخ انتشار 2014